
PROFL: A Privacy-Preserving Federated Learning
Method with Stringent Defense Against Poisoning

Attacks

Yisheng Zhong, Li-Ping Wang∗

Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, Chinese Academy of Sciences
School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

{zhongyisheng,wangliping}@iie.ac.cn

Abstract—Federated Learning (FL) faces two major issues:
privacy leakage and poisoning attacks, which may seriously
undermine the reliability and security of the system. Overcoming
them simultaneously poses a great challenge. This is because pri-
vacy protection policies prohibit access to users’ local gradients to
avoid privacy leakage, while Byzantine-robust methods necessi-
tate access to these gradients to defend against poisoning attacks.
To address these problems, we propose a novel privacy-preserving
Byzantine-robust FL framework PROFL. PROFL is based on the
two-trapdoor additional homomorphic encryption algorithm and
blinding techniques to ensure the data privacy of the entire FL
process. During the defense process, PROFL first utilize secure
Multi-Krum algorithm to remove malicious gradients at the user
level. Then, according to the Pauta criterion, we innovatively
propose a statistic-based privacy-preserving defense algorithm
to eliminate outlier interference at the feature level and resist
impersonation poisoning attacks with stronger concealment. De-
tailed theoretical analysis proves the security and efficiency of
the proposed method. We conducted extensive experiments on
two benchmark datasets, and PROFL improved accuracy by
39% to 75% across different attack settings compared to similar
privacy-preserving robust methods, demonstrating its significant
advantage in robustness.

Index Terms—Federated Learning, Poisoning Attack, Privacy-
Preserving, Defense Strategy.

I. INTRODUCTION

Federated Learning (FL) allows data owners to enhance the

efficiency and accuracy of global models without exposing

their private data. FL has broad potential applications in fields

such as healthcare [1] and finance [2]. However, FL also faces

problems including privacy leakage and poisoning attacks,

which pose a threat to its security and reliability.

Privacy leakage that results in data security issues is the

first major threat faced by FL. As the gradients contain some

private information, uploading them directly to the central

server without undergoing special treatment can result in

leakage issues [3]. Poisoning attack leading to a decrease in

model reliability is the another major threat to FL. Byzantine

adversaries employ poisoning attacks to manipulate malicious

participants and intentionally inject harmful information into

the uploaded gradient. This manipulation leads to gradient

deviation, ultimately undermining model performance [4] and

altering model decisions [5]. Therefore, developing a FL

mechanism that simultaneously preserves privacy and resists

poisoning attacks is crucial to making FL a trustworthy and

reliable technique.
However, there are still two important obstacles to achieving

such a FL system. One is that privacy-preserving FL aims to

guarantee the indistinguishability of the data, while defensive

approaches necessitate access to local gradients and use simi-

larity measures to distinguish malicious gradients from benign

gradients, which seems paradoxical. The other is that there

are now cunning Byzantine adversaries who make poisoning

gradient attacks more covert. For example, some camouflage

methods [6] are capable of analyzing the range of parameter

changes that the defender cannot detect and then evade defense

mechanisms. Recent approaches achieve a balance between

privacy and robustness. For instance, PEFL [7] utilizes the

Pearson correlation coefficient to identify outliers, employing

a dual-server model for secure computation where trusted

servers hold keys to collaborate with additive homomorphic

encryption algorithms. The ShieldFL [8] adopts Two-trap-

door homomorphic encryption technology to relax the trust

requirement for servers, using cosine similarity to identify

malicious gradients. However, their robustness and privacy are

not ideal.
To address the above issues, we proposes a composite

privacy-preserving Byzantine-robust algorithm called PROFL.

It performs two-trapdoor additional homomorphic algorithm

(AHE) [9] and blinding techniques on two non-colluding

servers to prevent privacy leakage during the defense process.

In addition, PROFL first uses the multi-krum algorithm [4]

based on the Euclidean distance as the similarity measure to

detect and eliminate poisoning gradients at the user level.

Then, PROFL uses statistical methods based on the Pauta

criterion to eliminate outliers at the feature level, thereby

resisting concealed impersonation poisoning attack. Such a

composite defense can defend against malicious gradient at-

tacks from macro and micro perspectives simultaneously. The

main contributions are summarized as follows.

● We propose a composite robust mechanism to counter

both general and concealed poisoning attacks. Across

multiple attack scenarios, compared to similar ap-

260

Proceedings of the 2024 27th International Conference on Computer Supported Cooperative Work in Design

979-8-3503-4918-4/24/$31.00 ©2024 IEEE

20
24

 2
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
om

pu
te

r S
up

po
rte

d
C

oo
pe

ra
tiv

e
W

or
k

in
 D

es
ig

n
(C

SC
W

D
) |

 9
79

-8
-3

50
3-

49
18

-4
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
C

SC
W

D
61

41
0.

20
24

.1
05

80
52

6

Authorized licensed use limited to: George Mason University. Downloaded on September 29,2024 at 23:55:10 UTC from IEEE Xplore. Restrictions apply.

proaches, our method demonstrates an improvement of

39% to 75% in performance. This showcases the broader

and more rigorous advantages of our composite defense.

● Compared to similar methods, both the security and

efficiency of our privacy-preserving strategy are higher.

PROFL effectively mitigates a broader range of collu-

sion attacks and, unlike multi-key methods, significantly

reduces the computational overhead associated with key

pair generation and joint decryption.

● Theoretical analysis demonstrates that PROFL performs

well in managing communication and time overheads.

The rest of this paper is organized as follows. In §II,

we introduce the problem statement. In §III, we present the

PROFL in detail. Subsequently, we perform the theoretical

analysis in §IV and evaluate the performance in §V. Finally,

the paper is concluded in §VI.

II. PROBLEM STATEMENT

A. System Model
Our system consists of a key center, a pair of servers, and

multiple users. Their relationship is as shown in the Fig 1.

User 1 Malicious User

. . .

Key Center

S1 S2

Local Gradient Poisoning Gradient

User n

Local Gradient
Key Distribution

Key Distribution

Secure Aggregation

Submit Local Gradient Download Global Model

Model Update

Fig. 1. System Model.

Key Center(KC): KC is a trusted agency responsible for

the generation and distribution of keys. First, it generates two

public-secret key pairs and splits one of the secret keys into

two shares. After generation, it distributes public and secret

keys and key shares to the designated participants.
Server(S1 and S2): The servers S1 and S2 cooperate and

restrict each other to complete complex operations over the

encrypted data and resist poisoning attacks. S1 is the primary

server, which is responsible for communicating with users and

executing robust algorithms. S2 is responsible for assisting S1

to complete the secure computation.
User(U): Users use the latest global model to locally train

the model on private data. Then, the gradient is encrypted

and uploaded to S1. After S1 and S2 cooperate to defend

and update the global model, users download the latest global

model to replace their local models.

B. Threat Model
We assume KC is completely trustworthy, so the possible

threats come from servers and users. Firstly, the two servers

are semi-honest. They both follow the pre-defined protocol,

but they attempt to decrypt the users’ gradients, and they

cannot collude with each other [10]. Similarly, users are semi-

honest, but they try to collude with S1 to decrypt other users’

gradients.

Secondly, the robustness of the model is threatened by

malicious users. We assume that malicious users can have

knowledge of benign users’ gradient distributions and other

information in advance. Malicious users submit poisoning

gradients to deviate the global model from the training target.

Moreover, considering that defense techniques often utilize the

principle of similarity to resist poisoning attacks, malicious

adversaries may employ countermeasures. These adversaries

cunningly design malicious gradients to be as close as possible

to benign gradients in terms of distance or similarity in

order to evade defenses. They also aim to make significant

changes in a few dimensions of these gradients to achieve their

poisoning objectives. Specifically, a malicious user will choose

p parameters from its malicious gradient gm and modify them

to arbitrarily large values of t such that:

Max(Dis(gi,gj)(i, j ∈ (1, n))) > Dis(gm = (..., t1, ..., tp, ...),gb)

where gb is a benign gradients and Dis is a distance function.

To ensure the practicability and realizability of the defense

strategy, we assume that the upper limit of malicious users is

⌊n
2
⌋ of all users.

III. FRAMEWORK

PROFL employs the Two-trapdoor AHE algorithm to pre-

serve privacy, which is a type of distributed public-key cryp-

tosystem. It is a variant of the Paillier Cryptosystem [11]

and possesses additive homomorphic properties. It mainly

consists of the components KeyGen, Enc, FullDec, KeySplit,
PartDec1 and PartDec2. Besides, the two-trapdoor AHE al-

gorithm satisfies the additive homomorphism, and we define

their operator symbols as ⊕ and ⊙ respectively. Therefore,

given two ciphertexts [[x1]] and [[x2]] and an integer A ∈ ZN ,

we can perform such a secure calculation in the encrypted

state:

[[x1]] ⊕ [[x2]] = [[x1]] ⋅ [[x2]] = [[x1 + x2]] (1)

[[x1]] ⊙A = [[x1]]
A = [[x1 ⋅A]] (2)

A. Initialization

Key Generation and Distribution: Firstly, KC gener-

ates two sets of public-secret keys using (pkm, skm) ←
KeyGen(1k1) and (pkg, skg) ← KeyGen(1k2), then delivers

the public key pkm to S1 and broadcasts the secret key skm
to all users, which are respectively used for encrypting and

decrypting the new global model. Next, KC broadcasts the

public key pkg to all users for encrypting the local gradients

submitted to the server. KC delivers the public key pkg to S1

to encrypt the intermediate variables for secure computation.

KC then splits the secret key skg into two secret shares skg1
and skg2 using (skg1 , skg2) ← KeySplit(skg), and distributes

261
Authorized licensed use limited to: George Mason University. Downloaded on September 29,2024 at 23:55:10 UTC from IEEE Xplore. Restrictions apply.

them to servers S1 and S2, respectively, for jointly decrypting

the gradients submitted by the users.

Model Initialization and Distribution: Firstly, the server

S1 randomly initializes a global model parameter w0, and

then uses the public key pkm to encrypt it as [[w0]] using

[[w0]] ← Enc(pkm,w0). Then S1 broadcasts the encrypted

model [[w0]] to each user. Each user Ui decrypt the global

model to obtain w0 with the secret key skm using w0 ←
FullDec(skm, [[w0]]).

B. Local Training

During the gradient generation phase, Benign users utilize

local data to conduct mini-batch local training on the latest

model, and then accumulate the obtained gradients. In the

same phase, malicious users will not submit gradients obtained

by training on real data. Instead, they upload their own

designed malicious gradients. As two-trapdoor AHE algorithm

are operated on integers, we use the precision parameter deg
to convert all parameters of gradients from floating-point to

integer format such that: g′ = ⌊g ⋅ deg⌉. Then, each user

encrypts the gradient and submits it to S1 for aggregation.

C. Privacy-Preserving Defense Strategy

To avoid the risk of a single untrusted server leaking

secret keys or decrypting users’ gradients, PROFL utilizes a

combination of two-trapdoor AHE mechanism and blinding

techniques to execute defensive strategies on two servers

without revealing plaintext gradients. Furthermore, in order

to prevent malicious users from colluding with either of the

two servers to decrypt gradients submitted by other users, we

set up two sets of public-secret key pairs. This enables users to

encrypt their own submitted gradients, while preventing them

from decrypting gradients submitted by other users.

To defend against poisoning attacks, PROFL proposes a

secure defense algorithm based on the Multi-Krum algorithm.

During the defense process, the secure distance function

SecDis is used to calculate the Euclidean distance between

two encrypted gradients. Then, the secure selection function

SecSel selects ⌈n
2
⌉ gradients that are closest to other local

gradients in geometric space as representatives. Based on the

proportion of malicious users, these representative gradients

are closer to the center of the group, and it is believed that

they can represent the characteristics of the vast majority of

benign user gradients, thereby enabling the global gradient to

converge towards the optimal aggregated gradient.

To address the issue of cunning malicious users whose

gradients cannot be distinguished using defense methods based

on similarity principles, we propose the Secure Represent

function SecRep to mitigate this vulnerability. SecRep applies

the Pauta criterion to remove outliers in each dimension and

then selects the median as the representative for that dimen-

sion. Through these operations, we obtain a representative

global gradient. The procedure is shown in Algorithm 1, and

the three security protocols are as follows:

SecDis: SecDis employs additive homomorphic algorithm

and blinding technique to calculate the Euclidean distance

Algorithm 1: Privacy-preserving Defense Strategy

Input: The encrypted local gradients
{[[g1]], [[g2]], ...[[gn]]}.

Output: Representative gradient [[gagg]].
1 /*Calculate the sum of the distances of each gradient to the

other gradients*/
2 for i ∈ [1, n] do
3 sumi = 0;
4 end
5 for i ∈ [1, n] do
6 for j ∈ [i, n] do
7 dis(i, j) = SecDis([[gi]], [[gj]]);

/*Accumulate dis(i, j) using homomorphic addition*/
8 [[sumi]] = [[sumi]] ⊕ dis(i, j),
9 [[sumj]] = [[sumj]] ⊕ dis(i, j);

10 end
11 end
12 /*Screening Representatives*/
13 Using SecSel, selects ⌈n

2
⌉ gradients with the largest

corresponding value in (sumi) (i ∈ [1, n]) among n
gradients, as the representative of benign gradients;

14 /*Remove Outliers*/
15 Arrange all gradients into sets {di}i∈[1,m] by dimension,

where di = {[[g1[i]]], [[g2[i]]], ...[[gn[i]]]} (here we use
g[i] to denote the i-th element of g);

16 for i ∈ [1 ∶m] do
17 Use SecRep algorithm to remove outliers in set di and

calculate the median medi of set di as a representative
of the i-th dimension;

18 end
19 return: aggregated gradient
[[gagg]] = [[(med1,med2, ...medm)]].

between two encrypted gradients. Given two encrypted gradi-

ents [[gx]] and [[gy]], the servers S1 and S2 jointly calculate

the Euclidean distance dis(i, j) ← SecDis([[gx]], [[gy]]). The

specified procedure is demonstrated in Fig.2.

SecSel: To identify gradients that can represent benign

users, S1 and S2 jointly call decryption algorithm PartDec1
and PartDec2 to obtain (sumi∈[1,n]) and find the ⌈n

2
⌉ gradi-

ents with the largest corresponding value in (sumi) among the

n gradients. To minimize the time spent in the selection pro-

cess, we use the Randomized-Selection (RS) algorithm, which

can solve the this top-k problem in O(n) time complexity.

SecRep: To supplement the defense vulnerability, PROFL

removes outliers in each dimension using the Pauta criterion,

also known as the 3σ criterion. The Pauta criterion is a very

common statistical method for dealing with outliers. It can

accurately rejects outliers and preserves benign value. Sub-

mitted gradients has a symmetrical distribution with high in

the middle and low on both sides, which can be approximated

as a normal distribution, thus it meets the preconditions of

the Pauta criterion. Finally, for each dimension, servers re-

statistics and select the median as the representative value of

the current dimension, as the final result of the aggregation.

To protect the privacy of gradients in the above process, we

need to use blinding techniques to perform statistics on the

decrypted gradient value without exposing the plaintext. The

specified procedure is shown in Fig.3.

262
Authorized licensed use limited to: George Mason University. Downloaded on September 29,2024 at 23:55:10 UTC from IEEE Xplore. Restrictions apply.

Implementation of SecDis

Input: S1 holds two gradients [[gx]], [[gy]], the public key pkg
and the secret key sk1; S2 holds the secret key sk2.
Output: Encrypted Euclidean distance [[d]] between [[gx]] and
[[gy]].
Procedure:
● @S1: To protect privacy of gradients, for i ∈ {x, y}, S1

randomly selects two nonzero noise vectors ri ← Z∗N to
blind the gradients using Equation (2) such that [[g′i]] =
[[gi]] ⋅ [[ri]] = [[gi + ri]]. Then, S1 partially decrypts the
gradient by calling [g′i]sk1 ← PartDec1(sk1, [[g

′
i]]), and

send [gi]sk1 and [[g′i]] to S2.
● @S2: To fully decrypt gradients, S2 calls algorithm g′i ←

PartDec2(sk2, [[g
′
i]], [gi]sk1) (i ∈ {x, y}). Then S2 calcu-

lates the Euclidean distance dis′ between g′x and g′y such

that dis′ = (g′x − g
′
y)

2 = [(gx + rx) − (gy + ry)]
2. Then S2

sends dis′ to S1.
● @S1: To remove the random noises and get [[dis]] using

Equation (1) such that:

[[dis]] = [[dis′ + t]] = [[dis′]] ⋅ [[t]] (3)

which needs intermediate results [[dis′]] and [[t]]. [[t]] can
be obtained using Equation (1) and (2) such that:

[[t]] = [[dis − dis′]] = [[(gx − gy)
2 − (g′x − g

′
y)

2]]

= [[gx]]
−2rx ⋅ [[−rx

2]] ⋅ [[gx]]
2ry ⋅ [[gy]]

2rx ⋅ [[2rxry]]

⋅[[gy]]
−2ry ⋅ [[−ry

2]] (4)

where S1 owns [[gx]], [[gy]], rx and ry . Then, removes the
random noises rx and ry and gets [[dis]] using Equation
(3), (4) and [[dis′]] ← Enc(pkg,dis

′). Finally, accumulate
each dimension in dis to obtain a numerical value [[d]] for
the distance between gradients using Equation (1) such that

∏
m
i=1[[dis(i)]].

Fig. 2. Detailed procedure of SecDis.

D. Integrate and Distribute

After executing the SecRep in each dimension, S1

concatenates the representatives of each dimension to get

the global gradient gagg = (med1, ...medm). Then, convert

the global gradient from integer type to floating-point type

and use it to update the current global model according to

w′ ∶=w−lr ⋅g. Finally, the latest global model w′ is encrypted

with the public key pkm using [[w′]] ← Enc(pkm,w′), and

distributed to each user.

IV. THEORETICAL ANALYSIS

A. Security Analysis

We provide a standard hybrid argument so as to prove that

the joint view of servers S1 and S2 does not disclose any

sensitive information about local gradients during protocol

execution. In other words, in the honest-but-curious setting,

PROFL achieves IND-CPA security [12]. The security theorem

is shown in Theorem 1, and due to space constraints, the proof

is omitted here.

Implementation of SecRep

Input: S1 holds the encrypted value of all gradients in the t-th
dimension dt = {[[g1(t)]], [[g2(t)]], ...[[gn′(t)]]}(n

′ = ⌈n
2
⌉) and

the secret key sk1; S2 holds the secret key sk2.
Output: The representative of all gradients in the t-th dimension
medt.
Procedure:
● @S1: To protect privacy, S1 randomly selects a nonzero

noise vector r ← Z∗N to blind the gradients gi(t) (i ∈
[1, n′]) using Equation(2) such that [[gi(t)

′]] = [[gi(t)]] ⋅
[[r]] = [[gi(t)+r]]. Then, S1 partially decrypts the gradient
by calling [gi(t)

′]sk1 ← PartDec1(sk1, [[gi(t)
′]]), and

send [gi(t)
′]sk1 and [[gi(t)

′]] to S2.
● @S2: To fully decrypt the gradients [[gi(t)

′]] (i ∈ [1, n′]),
S2 calls gi(t)

′ ← PartDec2(sk2, [[gi(t)
′]], [gi(t)

′]sk1).
Then, S2 calculates the mean μ and variance σ of gi(t)

′

and eliminates the gradient value outside the range of μ±3σ
according to the Pauta criterion. Finally, S2 re-statistics the
gradient value to find the median med′t and sends it to S1.

● @S1: To obtain the median medt, S1 removes the blinding
r of the median med′t using medt =med′t − r.

Fig. 3. Detailed procedure of SecRep.

Theorem 1. Given a security parameter κ, two non-colluding
servers S1 and S2, users U , define a random variable
REALU,κ

Π to represent the joint view of servers S1 and S2

during the execution of the protocol Π. There exists a prob-
abilistic polynomial-time (PPT) simulator SIM , whose view
SIMU,κ

Π is computationally indistinguishable from REALU,κ
Π .

B. Complexity Analysis

To evaluate the efficiency of PROFL, we discuss the com-

munication and computational complexity for each training

iteration, as shown in Table I.

TABLE I
COMPUTATION AND COMMUNICATION COMPLEXITY IN PROFL

Phase
PROFL

Compu. Comm.

SecDis∗ O(n2m(TEnc + TAdd) + nm(TDec + TMul)) O(2nm∣X ∣)
SecSel O(nTDec) O(n)
SecRep O(nm(TAdd + TDec)) O(2m∣X ∣)
Note: SecDis∗ indicates that SecDis is executed multiple times.

Let n and m be the number of users participating in the

aggregation and the number of dimensions of gradients. ∣X ∣
represents the communication complexity of an encrypted

number. TAdd, TMul, TEnc, and TDec are the time com-

plexities of homomorphic operations, where homomorphic

decryption consists of partial decryption step one and two.

The time complexities TEnc > TDec >> TMul > TAdd.

When calculating the centrality of n gradients, each gra-

dient must calculate the Euclidean distance with the rest of

the gradients, so SecDis needs to be called ∑
n−1
i=1 i times.

However, in this process, many intermediate variables are

repeatedly calculated, which can be avoided by storing them.

The same approach can be taken for the communication.

263
Authorized licensed use limited to: George Mason University. Downloaded on September 29,2024 at 23:55:10 UTC from IEEE Xplore. Restrictions apply.

Therefore, the computational and communication complexity

can be greatly reduced. It’s worth noting that we observe

a positive correlation between the computational complexity

of the SecDis phase and n2. However, considering that in

practical applications, such as in the medical and banking

fields, each user represents an institution, the quantity of users

n is often small. Therefore, the computational overhead of

SecDis won’t become unacceptable due to the growth of n.

In the SecSel protocol, the complexity mainly depends

on the number of gradients n. In the SepRep process, the

complexity is limited to the number of benign gradients ⌈n
2
⌉

and the gradient dimension m.

V. PERFORMANCE EVALUATION

In this section, we conducted experiments on two datasets

using multiple different settings to evaluate the performance of

PROFL: (1) evaluating the performance of PROFL under vari-

ous attack settings (attack method, attack ratio); (2) comparing

the performance of PROFL with four other typical defense

schemes, including Krum [4], Trimmed Mean [13], PEFL [7],

and ShieldFL [8]. To highlight the advantages of PROFL, we

used FedAvg [14] without any defense as a baseline.

A. Testbed and Methodology

All experiments were run on a Macbook pro computer

equipped with a M2 pro processor. We implemented the two-

trapdoor AHE protocol at the 80-bit security level [15] using

python 3.8.11. The PROFL algorithm was tested using the

pytorch library and lightweight threads were used to simulate

the local learning processes of multiple users.

Data Setting: To evaluate the performance of PROFL, we

conducted experiments on three benchmark datasets, MINIST,

FashionMINIST and CIFAR-10. To simulate real situations,

the local learning model of each user should be underfitting,

which can reflect the value of FL. Therefore, we believe

that the total number of training data should be set at about

10%. PROFL is designed for independently and identically

distributed data, so we choose to randomly shuffle the dataset

and distribute it equally to each user.

Models and Hyperparameters: In this task, we use a

classical logistic regression as the model structure. We set

the total number of users in the experiment to 20. For each

experiment, we set the batch size to 256, momentum to 0.5,

and perform 1000 iterations on datasets. The data point for

each experiment is the average of 10 experimental results.

Poisoning Attack Settings: To evaluate the ability of

PROFL to resist poisoning attacks, we designed two types of

attacks: target attacks [16] and non-target attacks. In addition,

after the gradient generation of attacks, we added the insidious

gradient attack described in the threat model. We simulate the

process of a Byzantine adversary evade the robust defense

method and poison the model by carefully designing the value

of certain dimensions of the malicious gradient. To evaluate

the performance of PROFL, we conducted experiments under

different proportions of malicious users. We used attack ratio

Attratio = ∣U
∗∣/∣U ∣ to describe the percentage of malicious

users, where ∣U ∣ is the number of all users and ∣U∗∣ is the

number of malicious users.

B. Accuracy Evaluation

Table II measures the performance of PROFL on target

and non-target attacks. In targeted attacks, we marked the

difference in the testing accuracy of the global model for

the specific source class Accsource between PROFL and

baseline. In non-targeted attacks, we marked the difference

in the testing accuracy Acc between PROFL and baseline.

AI = Acc−Acc∗ is the improvement in accuracy of the global

model, where Acc∗ is the testing accuracy of the baseline

model. AIsource = Accsource −Acc∗source is the improvement

in accuracy of the global model for a specific source class.

TABLE II
ACCURACY COMPARISON (Attratio = 50%)

Datasets Attack
Baseline PROFL

Acc∗s Acc∗ Accs Acc AIs AI

Minist
Targeted 22.3% ∗ 97.4% 92.8% 75.1% ∗

Untargeted ∗ 46.5% ∗ 92.1% ∗ 45.6%

Fashion Targeted 19.9% ∗ 73.9% 82.3% 54.0% ∗

Minist Untargeted ∗ 43.5% ∗ 82.5% ∗ 39.0%

Accs and AIs denotes Accsource ang AIsource , respectively.

Fig.4(a) show the accuracy trajectories with Attratio=50%

under the targeted attack, where the source class is ‘0’ and

the target class is ‘6’. As the figures indicate, PROFL has

significantly improved Accsources compared to the baseline.

To evaluate the impact of the ratio of attacks on PROFL,

Fig.4(b) depicts the change of Acc and AI with Attratio ∈
[0%,30%,50%]. The image indicates that PROFL maintains

stable accuracy and remarkable accuracy improvement at dif-

ferent Attratio. Even under the worst case scenario of Attratio
= 50%, PROFL can still achieve high accuracy rates of up to

92% and 82% in the datasets MINIST and FashionMINIST

respectively, with accuracy improvements of 48% and 43%.

This demonstrates the powerful robustness of PROFL.

As shown in Fig.4(c)-4(d), We compared PROFL with

existing excellent solutions at different Attratio. It can be

observed that, as the proportion of malicious users increases,

the accuracy of all defense measures except PROFL decreases

significantly. We believe that this is because with the increase

of Attratio, not only valuable data during the training process

is reduced, but also the ability of defense methods to identify

high-proportion malicious gradients weakens, leading to a de-

terioration of the robust aggregation effect. However, PROFL

maintains excellent robustness throughout the process. We at-

tribute this to PROFL’s ability to accurately exclude poisoning

gradients, making the contribution of benign gradients to the

global gradient is purer.

C. Communication and Computational Overhead

We evaluated the communication overhead of PROFL.

Additionally, we introduced the total communication volume

provided by ShieldFL [8], which employs similar encryption

approach as ours. This allows for a clear comparison with

PROFL under the same security level. The communication vol-

ume comparison is illustrated in the Table.III. We can observe

264
Authorized licensed use limited to: George Mason University. Downloaded on September 29,2024 at 23:55:10 UTC from IEEE Xplore. Restrictions apply.

0 200 400 600 800 1000

Iteration

0

20

40

60

80

100

A
c
c
u
ra
c
y
(%

)
FashionMINIST

Acc

Accsource

Acc
*
source

(a) Target attack.

0 200 400 600 800 1000

Iteration

50

60

70

80

90

100

T
e
s
t

A
c
c
u
ra

c
y
(%

)

10%

30%

50%

0

20

40

60

80

100

A
c
c
u
ra

c
y
 I
m

p
ro

v
e
m

e
n
t(

%
)

Fashion MINIST

AI in 10%

AI in 30%

AI in 50%

(b) Untarget attack under different
Attratio.

0% 10% 20% 30% 40% 50%

Attratio

30

40

50

60

70

80

90

A
c
c
u
ra
c
y
(%

)

Fashion MINIST

Baseline

T_mean

Krum

PEFL

ShieldFL

PROFL

(c) Untarget attack under different
defense strategies.

0% 10% 20% 30% 40% 50%

Attratio

30

40

50

60

70

80

90

100

A
c
c
u
ra
c
y
(%

)

CIFAR-10

Baseline

T_mean

Krum

PEFL

ShieldFL

PROFL

(d) Untarget attack under different
defense strategies.

Fig. 4. EXPERIMENTAL RESULT.

TABLE III
TOTAL COMPUTATION COST AND RUNNING TIME OF THE DEFENSE

STRATEGY IN ONE ITERATION

Total transmitted data (MB)
Mothods 3 Users 5 Users 10 Users 15 Users 20 Users 25 Users
PROFL 18 31 63 96 129 162

ShieldFL 87 146 291 436 582 728

Running time
Mothods 3 Users 5 Users 10 Users 15 Users 20 Users 25 Users
PROFL 4.79 s 9.68 s 34.08 s 75.95 s 135.23 s 211.95 s

that PROFL demonstrates better control over communication

overhead compared to ShieldFL. This is attributed to the fact

that in PROFL, only during the SecDis process do servers

transmit ciphertexts of gradients, while in other phases, data

transmitted between servers consists of intermediate variables

in plaintext or a small amount of encrypted data.

During the security defense process, we optimize task exe-

cution using 12-core multi-threading technique. We tested the

average runtime of each algorithmic components in PROFL

under different numbers of participants, as shown in the Table

III. In the case of 20 participants, after optimizing scheduling,

the runtime for one iteration of the privacy-preserving defense

strategy is 34.08 seconds. In the same setup, ShieldFL provides

data of around 1.2 seconds. However, it should be noted that

this data is obtained from running on devices different from

ours. Compared to ShieldFL, although PROFL does not exhibit

significant advantages in terms of communication and compu-

tation overheads, it provide greater robustness and security to

federated learning in scenarios with a higher proportion of

poisoning attackers or instances of covert poisoning attacks.

VI. CONCLUSION

In this paper, we propose PROFL to defend against various

poisoning attacks while protecting privacy. We use a composite

algorithm to identify and eliminate the interference from

poisoning attacks. We use the two-trapdoor AHE algorithm to

protect the privacy of the entire FL process. Security analysis

and experimental evaluation show that PROFL is superior to

similar works in terms of security and robustness. In future

work, we will further explore methods to optimize efficiency

and reduce the computational and communication costs.

ACKNOWLEDGMENT

This research was supported by the National Natural Sci-

ence Foundation of China under Grant No, 62372446 and the

National Key Re.search and Development Program of China

under Grant No.2018YFA0704703.

REFERENCES

[1] I. Dayan, H. R. Roth, et al., “Federated learning for predicting clinical
outcomes in patients with covid-19,” Nature medicine, vol. 27, no. 10,
pp. 1735–1743, 2021.

[2] W. Zheng, L. Yan, et al., “Federated meta-learning for fraudulent credit
card detection,” in IJCAI, pp. 4654–4660, 2020.

[3] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in NeurIPS,
pp. 14747–14756, 2019.

[4] P. Blanchard, E. M. E. Mhamdi, et al., “Machine learning with ad-
versaries: Byzantine tolerant gradient descent,” in NIPS, pp. 119–129,
2017.

[5] C. Xie, K. Huang, P. Chen, et al., “DBA: distributed backdoor attacks
against federated learning,” in ICLR, 2020.

[6] G. Baruch, M. Baruch, and Y. Goldberg, “A little is enough: Circum-
venting defenses for distributed learning,” in NeurIPS, pp. 8632–8642,
2019.

[7] X. Liu, H. Li, et al., “Privacy-enhanced federated learning against
poisoning adversaries,” IEEE Trans. Inf. Forensics Secur., vol. 16,
pp. 4574–4588, 2021.

[8] Z. Ma, J. Ma, et al., “Shieldfl: Mitigating model poisoning attacks
in privacy-preserving federated learning,” IEEE Trans. Inf. Forensics
Secur., vol. 17, pp. 1639–1654, 2022.

[9] X. Liu, R. H. Deng, et al., “An efficient privacy-preserving outsourced
calculation toolkit with multiple keys,” IEEE Trans. Inf. Forensics Secur.,
vol. 11, no. 11, pp. 2401–2414, 2016.

[10] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in 2017 IEEE symposium on security and
privacy (SP), pp. 19–38, IEEE, 2017.

[11] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in EUROCRYPT, pp. 223–238, Springer, 1999.

[12] P. Paillier and D. Pointcheval, “Efficient public-key cryptosystems
provably secure against active adversaries,” in ASIACRYPT, pp. 165–
179, 1999.

[13] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust dis-
tributed learning: Towards optimal statistical rates,” in International
Conference on Machine Learning, pp. 5650–5659, PMLR, 2018.

[14] B. McMahan, E. Moore, et al., “Communication-efficient learning of
deep networks from decentralized data,” in Artificial intelligence and
statistics, pp. 1273–1282, PMLR, 2017.

[15] D. Catalano, R. Gennaro, and N. Howgrave-Graham, “The bit security
of paillier’s encryption scheme and its applications,” in EUROCRYPT,
pp. 229–243, Springer, 2001.

[16] E. Bagdasaryan, A. Veit, et al., “How to backdoor federated learning,”
in International Conference on Artificial Intelligence and Statistics,
pp. 2938–2948, PMLR, 2020.

265
Authorized licensed use limited to: George Mason University. Downloaded on September 29,2024 at 23:55:10 UTC from IEEE Xplore. Restrictions apply.

